您选择的条件: Yan-Lei Zhang
  • Break the efficiency limitations of dissipative Kerr soliton using nonlinear couplers

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Dissipative Kerr soliton (DKS) offers a compact solution of coherent comb sources and holds huge potential for applications, but has long been suffering from poor power conversion efficiency when driving by a continuous-wave laser. Here, a general approach to resolving this challenge is provided. By deriving the critical coupling condition of a multimode nonlinear optics system in a generalized theoretical framework, two efficiency limitations of the conventional pump method of DKS are revealed: the effective coupling rate is too small and is also power-dependent. Nonlinear couplers are proposed to sustain the DKS indirectly through nonlinear energy conversion processes, realizing a power-adaptive effective coupling rate to the DKS and matching the total dissipation rate of the system, which promises near-unity power conversion efficiencies. For instance, a conversion efficiency exceeding $90\:\%$ is predicted for aluminum nitride microrings with a nonlinear coupler utilizing second-harmonic generation. The nonlinear coupler approach for high-efficiency generation of DKS is experimentally feasible as its mechanism applies to various nonlinear processes, including Raman and Brillouin scattering, and thus paves the way of micro-solitons towards practical applications.

  • Classical-to-quantum transition in multimode nonlinear systems with strong photon-photon coupling

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: With advanced micro- and nano-photonic structures, the vacuum photon-photon coupling rate is anticipated to approach the intrinsic loss rate and lead to unconventional quantum effects. Here, we investigate the classical-to-quantum transition of such photonic nonlinear systems using the quantum cluster-expansion method, which addresses the computational challenge in tracking large photon number states of the fundamental and harmonic optical fields involved in the second harmonic generation process. Compared to the mean-field approximation used in weak coupling limit, the quantum cluster-expansion method solves multimode dynamics efficiently and reveals the quantum behaviors of optical parametric oscillations around the threshold. This work presents a universal tool to study quantum dynamics of multimode systems and explore the nonlinear photonic devices for continuous-variable quantum information processing.

  • Self-induced optical non-reciprocity

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Non-reciprocal optical components are indispensable in optical applications, and their realization without any magnetic field arose increasing research interests in photonics. Exciting experimental progress has been achieved by either introducing spatial-temporal modulation of the optical medium or combining Kerr-type optical nonlinearity with spatial asymmetry in photonic structures. However, extra driving fields are required for the first approach, while the isolation of noise and the transmission of the signal cannot be simultaneously achieved for the other approach. Here, we experimentally demonstrate a new concept of nonlinear non-reciprocal susceptibility for optical media and realize the completely passive isolation of optical signals without any external bias field. The self-induced isolation by the input signal is demonstrated with an extremely high isolation ratio of 63.4 dB, a bandwidth of 2.1 GHz for 60 dB isolation, and a low insertion loss of around 1 dB. Furthermore, novel functional optical devices are realized, including polarization purification and non-reciprocal leverage. The demonstrated nonlinear non-reciprocity provides a versatile tool to control light and deepen our understanding of light-matter interactions, and enables applications ranging from topological photonics to unidirectional quantum information transfer in a network.

  • Non-reciprocal frequency conversion and mode routing in a microresonator

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The transportation of photons and phonons typically obeys the principle of reciprocity. Breaking reciprocity of these bosonic excitations will enable the corresponding non-reciprocal devices, such as isolators and circulators. Here, we use two optical modes and two mechanical modes in a microresonator to form a four-mode plaquette via radiation pressure force. The phase-controlled non-reciprocal routing between any two modes with completely different frequencies is demonstrated, including the routing of phonon to phonon (MHz to MHz), photon to phonon (THz to MHz), and especially photon to photon with frequency difference of around 80 THz for the first time. In addition, one more mechanical mode is introduced to this plaquette to realize a phononic circulator in such single microresonator. The non-reciprocity is derived from interference between multi-mode transfer processes involving optomechanical interactions in an optomechanical resonator. It not only demonstrates the non-reciprocal routing of photons and phonons in a single resonator but also realizes the non-reciprocal frequency conversion for photons and circulation for phonons, laying a foundation for studying directional routing and thermal management in an optomechanical hybrid network.

  • Single-sideband microwave-to-optical conversion in high-Q ferrimagnetic microspheres

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Coherent conversion of microwave and optical photons can significantly expand the ability to control the information processing and communication systems. Here, we experimentally demonstrate the microwave-to-optical frequency conversion in a magneto-optical whispering gallery mode microcavity. By applying a magnetic field parallel to the microsphere equator, the intra-cavity optical field will be modulated when the magnon is excited by the microwave drive, leading to microwave-to-optical conversion via the magnetic Stokes and anti-Stokes scattering processes. The observed single sideband conversion phenomenon indicates a non-trivial optical photon-magnon interaction mechanism, which is derived from the magnon induced both the frequency shift and modulated coupling rate of optical modes. In addition, we demonstrate the single-sideband frequency conversion with an ultrawide tuning range up to 2.5GHz, showing its great potential in microwave-to-optical conversion.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心